initial import
[vuplus_webkit] / Source / JavaScriptCore / wtf / dtoa / double-conversion.h
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #ifndef DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
29 #define DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_
30
31 #include "utils.h"
32
33 namespace WTF {
34
35 namespace double_conversion {
36     
37     class DoubleToStringConverter {
38     public:
39         // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint
40         // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the
41         // function returns false.
42         static const int kMaxFixedDigitsBeforePoint = 60;
43         static const int kMaxFixedDigitsAfterPoint = 60;
44         
45         // When calling ToExponential with a requested_digits
46         // parameter > kMaxExponentialDigits then the function returns false.
47         static const int kMaxExponentialDigits = 120;
48         
49         // When calling ToPrecision with a requested_digits
50         // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits
51         // then the function returns false.
52         static const int kMinPrecisionDigits = 1;
53         static const int kMaxPrecisionDigits = 120;
54         
55         enum Flags {
56             NO_FLAGS = 0,
57             EMIT_POSITIVE_EXPONENT_SIGN = 1,
58             EMIT_TRAILING_DECIMAL_POINT = 2,
59             EMIT_TRAILING_ZERO_AFTER_POINT = 4,
60             UNIQUE_ZERO = 8
61         };
62         
63         // Flags should be a bit-or combination of the possible Flags-enum.
64         //  - NO_FLAGS: no special flags.
65         //  - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent
66         //    form, emits a '+' for positive exponents. Example: 1.2e+2.
67         //  - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is
68         //    converted into decimal format then a trailing decimal point is appended.
69         //    Example: 2345.0 is converted to "2345.".
70         //  - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point
71         //    emits a trailing '0'-character. This flag requires the
72         //    EXMIT_TRAILING_DECIMAL_POINT flag.
73         //    Example: 2345.0 is converted to "2345.0".
74         //  - UNIQUE_ZERO: "-0.0" is converted to "0.0".
75         //
76         // Infinity symbol and nan_symbol provide the string representation for these
77         // special values. If the string is NULL and the special value is encountered
78         // then the conversion functions return false.
79         //
80         // The exponent_character is used in exponential representations. It is
81         // usually 'e' or 'E'.
82         //
83         // When converting to the shortest representation the converter will
84         // represent input numbers in decimal format if they are in the interval
85         // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[
86         //    (lower boundary included, greater boundary excluded).
87         // Example: with decimal_in_shortest_low = -6 and
88         //               decimal_in_shortest_high = 21:
89         //   ToShortest(0.000001)  -> "0.000001"
90         //   ToShortest(0.0000001) -> "1e-7"
91         //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
92         //   ToShortest(100000000000000000000.0)  -> "100000000000000000000"
93         //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
94         //
95         // When converting to precision mode the converter may add
96         // max_leading_padding_zeroes before returning the number in exponential
97         // format.
98         // Example with max_leading_padding_zeroes_in_precision_mode = 6.
99         //   ToPrecision(0.0000012345, 2) -> "0.0000012"
100         //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
101         // Similarily the converter may add up to
102         // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
103         // returning an exponential representation. A zero added by the
104         // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
105         // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
106         //   ToPrecision(230.0, 2) -> "230"
107         //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
108         //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
109         DoubleToStringConverter(int flags,
110                                 const char* infinity_symbol,
111                                 const char* nan_symbol,
112                                 char exponent_character,
113                                 int decimal_in_shortest_low,
114                                 int decimal_in_shortest_high,
115                                 int max_leading_padding_zeroes_in_precision_mode,
116                                 int max_trailing_padding_zeroes_in_precision_mode)
117         : flags_(flags),
118         infinity_symbol_(infinity_symbol),
119         nan_symbol_(nan_symbol),
120         exponent_character_(exponent_character),
121         decimal_in_shortest_low_(decimal_in_shortest_low),
122         decimal_in_shortest_high_(decimal_in_shortest_high),
123         max_leading_padding_zeroes_in_precision_mode_(
124                                                       max_leading_padding_zeroes_in_precision_mode),
125         max_trailing_padding_zeroes_in_precision_mode_(
126                                                        max_trailing_padding_zeroes_in_precision_mode) {
127             // When 'trailing zero after the point' is set, then 'trailing point'
128             // must be set too.
129             ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) ||
130                    !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0));
131         }
132         
133         // Returns a converter following the EcmaScript specification.
134         static const DoubleToStringConverter& EcmaScriptConverter();
135         
136         // Computes the shortest string of digits that correctly represent the input
137         // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high
138         // (see constructor) it then either returns a decimal representation, or an
139         // exponential representation.
140         // Example with decimal_in_shortest_low = -6,
141         //              decimal_in_shortest_high = 21,
142         //              EMIT_POSITIVE_EXPONENT_SIGN activated, and
143         //              EMIT_TRAILING_DECIMAL_POINT deactived:
144         //   ToShortest(0.000001)  -> "0.000001"
145         //   ToShortest(0.0000001) -> "1e-7"
146         //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
147         //   ToShortest(100000000000000000000.0)  -> "100000000000000000000"
148         //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
149         //
150         // Note: the conversion may round the output if the returned string
151         // is accurate enough to uniquely identify the input-number.
152         // For example the most precise representation of the double 9e59 equals
153         // "899999999999999918767229449717619953810131273674690656206848", but
154         // the converter will return the shorter (but still correct) "9e59".
155         //
156         // Returns true if the conversion succeeds. The conversion always succeeds
157         // except when the input value is special and no infinity_symbol or
158         // nan_symbol has been given to the constructor.
159         bool ToShortest(double value, StringBuilder* result_builder) const;
160         
161         
162         // Computes a decimal representation with a fixed number of digits after the
163         // decimal point. The last emitted digit is rounded.
164         //
165         // Examples:
166         //   ToFixed(3.12, 1) -> "3.1"
167         //   ToFixed(3.1415, 3) -> "3.142"
168         //   ToFixed(1234.56789, 4) -> "1234.5679"
169         //   ToFixed(1.23, 5) -> "1.23000"
170         //   ToFixed(0.1, 4) -> "0.1000"
171         //   ToFixed(1e30, 2) -> "1000000000000000019884624838656.00"
172         //   ToFixed(0.1, 30) -> "0.100000000000000005551115123126"
173         //   ToFixed(0.1, 17) -> "0.10000000000000001"
174         //
175         // If requested_digits equals 0, then the tail of the result depends on
176         // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT.
177         // Examples, for requested_digits == 0,
178         //   let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be
179         //    - false and false: then 123.45 -> 123
180         //                             0.678 -> 1
181         //    - true and false: then 123.45 -> 123.
182         //                            0.678 -> 1.
183         //    - true and true: then 123.45 -> 123.0
184         //                           0.678 -> 1.0
185         //
186         // Returns true if the conversion succeeds. The conversion always succeeds
187         // except for the following cases:
188         //   - the input value is special and no infinity_symbol or nan_symbol has
189         //     been provided to the constructor,
190         //   - 'value' > 10^kMaxFixedDigitsBeforePoint, or
191         //   - 'requested_digits' > kMaxFixedDigitsAfterPoint.
192         // The last two conditions imply that the result will never contain more than
193         // 1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters
194         // (one additional character for the sign, and one for the decimal point).
195         bool ToFixed(double value,
196                      int requested_digits,
197                      StringBuilder* result_builder) const;
198         
199         // Computes a representation in exponential format with requested_digits
200         // after the decimal point. The last emitted digit is rounded.
201         // If requested_digits equals -1, then the shortest exponential representation
202         // is computed.
203         //
204         // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and
205         //               exponent_character set to 'e'.
206         //   ToExponential(3.12, 1) -> "3.1e0"
207         //   ToExponential(5.0, 3) -> "5.000e0"
208         //   ToExponential(0.001, 2) -> "1.00e-3"
209         //   ToExponential(3.1415, -1) -> "3.1415e0"
210         //   ToExponential(3.1415, 4) -> "3.1415e0"
211         //   ToExponential(3.1415, 3) -> "3.142e0"
212         //   ToExponential(123456789000000, 3) -> "1.235e14"
213         //   ToExponential(1000000000000000019884624838656.0, -1) -> "1e30"
214         //   ToExponential(1000000000000000019884624838656.0, 32) ->
215         //                     "1.00000000000000001988462483865600e30"
216         //   ToExponential(1234, 0) -> "1e3"
217         //
218         // Returns true if the conversion succeeds. The conversion always succeeds
219         // except for the following cases:
220         //   - the input value is special and no infinity_symbol or nan_symbol has
221         //     been provided to the constructor,
222         //   - 'requested_digits' > kMaxExponentialDigits.
223         // The last condition implies that the result will never contain more than
224         // kMaxExponentialDigits + 8 characters (the sign, the digit before the
225         // decimal point, the decimal point, the exponent character, the
226         // exponent's sign, and at most 3 exponent digits).
227         bool ToExponential(double value,
228                            int requested_digits,
229                            StringBuilder* result_builder) const;
230         
231         // Computes 'precision' leading digits of the given 'value' and returns them
232         // either in exponential or decimal format, depending on
233         // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the
234         // constructor).
235         // The last computed digit is rounded.
236         //
237         // Example with max_leading_padding_zeroes_in_precision_mode = 6.
238         //   ToPrecision(0.0000012345, 2) -> "0.0000012"
239         //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
240         // Similarily the converter may add up to
241         // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
242         // returning an exponential representation. A zero added by the
243         // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
244         // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
245         //   ToPrecision(230.0, 2) -> "230"
246         //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
247         //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
248         // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no
249         //    EMIT_TRAILING_ZERO_AFTER_POINT:
250         //   ToPrecision(123450.0, 6) -> "123450"
251         //   ToPrecision(123450.0, 5) -> "123450"
252         //   ToPrecision(123450.0, 4) -> "123500"
253         //   ToPrecision(123450.0, 3) -> "123000"
254         //   ToPrecision(123450.0, 2) -> "1.2e5"
255         //
256         // Returns true if the conversion succeeds. The conversion always succeeds
257         // except for the following cases:
258         //   - the input value is special and no infinity_symbol or nan_symbol has
259         //     been provided to the constructor,
260         //   - precision < kMinPericisionDigits
261         //   - precision > kMaxPrecisionDigits
262         // The last condition implies that the result will never contain more than
263         // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the
264         // exponent character, the exponent's sign, and at most 3 exponent digits).
265         bool ToPrecision(double value,
266                          int precision,
267                          StringBuilder* result_builder) const;
268         
269         enum DtoaMode {
270             // Produce the shortest correct representation.
271             // For example the output of 0.299999999999999988897 is (the less accurate
272             // but correct) 0.3.
273             SHORTEST,
274             // Produce a fixed number of digits after the decimal point.
275             // For instance fixed(0.1, 4) becomes 0.1000
276             // If the input number is big, the output will be big.
277             FIXED,
278             // Fixed number of digits (independent of the decimal point).
279             PRECISION
280         };
281         
282         // The maximal number of digits that are needed to emit a double in base 10.
283         // A higher precision can be achieved by using more digits, but the shortest
284         // accurate representation of any double will never use more digits than
285         // kBase10MaximalLength.
286         // Note that DoubleToAscii null-terminates its input. So the given buffer
287         // should be at least kBase10MaximalLength + 1 characters long.
288         static const int kBase10MaximalLength = 17;
289         
290         // Converts the given double 'v' to ascii.
291         // The result should be interpreted as buffer * 10^(point-length).
292         //
293         // The output depends on the given mode:
294         //  - SHORTEST: produce the least amount of digits for which the internal
295         //   identity requirement is still satisfied. If the digits are printed
296         //   (together with the correct exponent) then reading this number will give
297         //   'v' again. The buffer will choose the representation that is closest to
298         //   'v'. If there are two at the same distance, than the one farther away
299         //   from 0 is chosen (halfway cases - ending with 5 - are rounded up).
300         //   In this mode the 'requested_digits' parameter is ignored.
301         //  - FIXED: produces digits necessary to print a given number with
302         //   'requested_digits' digits after the decimal point. The produced digits
303         //   might be too short in which case the caller has to fill the remainder
304         //   with '0's.
305         //   Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2.
306         //   Halfway cases are rounded towards +/-Infinity (away from 0). The call
307         //   toFixed(0.15, 2) thus returns buffer="2", point=0.
308         //   The returned buffer may contain digits that would be truncated from the
309         //   shortest representation of the input.
310         //  - PRECISION: produces 'requested_digits' where the first digit is not '0'.
311         //   Even though the length of produced digits usually equals
312         //   'requested_digits', the function is allowed to return fewer digits, in
313         //   which case the caller has to fill the missing digits with '0's.
314         //   Halfway cases are again rounded away from 0.
315         // DoubleToAscii expects the given buffer to be big enough to hold all
316         // digits and a terminating null-character. In SHORTEST-mode it expects a
317         // buffer of at least kBase10MaximalLength + 1. In all other modes the
318         // requested_digits parameter (+ 1 for the null-character) limits the size of
319         // the output. The given length is only used in debug mode to ensure the
320         // buffer is big enough.
321         static void DoubleToAscii(double v,
322                                   DtoaMode mode,
323                                   int requested_digits,
324                                   char* buffer,
325                                   int buffer_length,
326                                   bool* sign,
327                                   int* length,
328                                   int* point);
329         
330     private:
331         // If the value is a special value (NaN or Infinity) constructs the
332         // corresponding string using the configured infinity/nan-symbol.
333         // If either of them is NULL or the value is not special then the
334         // function returns false.
335         bool HandleSpecialValues(double value, StringBuilder* result_builder) const;
336         // Constructs an exponential representation (i.e. 1.234e56).
337         // The given exponent assumes a decimal point after the first decimal digit.
338         void CreateExponentialRepresentation(const char* decimal_digits,
339                                              int length,
340                                              int exponent,
341                                              StringBuilder* result_builder) const;
342         // Creates a decimal representation (i.e 1234.5678).
343         void CreateDecimalRepresentation(const char* decimal_digits,
344                                          int length,
345                                          int decimal_point,
346                                          int digits_after_point,
347                                          StringBuilder* result_builder) const;
348         
349         const int flags_;
350         const char* const infinity_symbol_;
351         const char* const nan_symbol_;
352         const char exponent_character_;
353         const int decimal_in_shortest_low_;
354         const int decimal_in_shortest_high_;
355         const int max_leading_padding_zeroes_in_precision_mode_;
356         const int max_trailing_padding_zeroes_in_precision_mode_;
357         
358         DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter);
359     };
360     
361     
362     class StringToDoubleConverter {
363     public:
364         // Enumeration for allowing octals and ignoring junk when converting
365         // strings to numbers.
366         enum Flags {
367             NO_FLAGS = 0,
368             ALLOW_HEX = 1,
369             ALLOW_OCTALS = 2,
370             ALLOW_TRAILING_JUNK = 4,
371             ALLOW_LEADING_SPACES = 8,
372             ALLOW_TRAILING_SPACES = 16,
373             ALLOW_SPACES_AFTER_SIGN = 32
374         };
375         
376         // Flags should be a bit-or combination of the possible Flags-enum.
377         //  - NO_FLAGS: no special flags.
378         //  - ALLOW_HEX: recognizes the prefix "0x". Hex numbers may only be integers.
379         //      Ex: StringToDouble("0x1234") -> 4660.0
380         //          In StringToDouble("0x1234.56") the characters ".56" are trailing
381         //          junk. The result of the call is hence dependent on
382         //          the ALLOW_TRAILING_JUNK flag and/or the junk value.
383         //      With this flag "0x" is a junk-string. Even with ALLOW_TRAILING_JUNK,
384         //      the string will not be parsed as "0" followed by junk.
385         //
386         //  - ALLOW_OCTALS: recognizes the prefix "0" for octals:
387         //      If a sequence of octal digits starts with '0', then the number is
388         //      read as octal integer. Octal numbers may only be integers.
389         //      Ex: StringToDouble("01234") -> 668.0
390         //          StringToDouble("012349") -> 12349.0  // Not a sequence of octal
391         //                                               // digits.
392         //          In StringToDouble("01234.56") the characters ".56" are trailing
393         //          junk. The result of the call is hence dependent on
394         //          the ALLOW_TRAILING_JUNK flag and/or the junk value.
395         //          In StringToDouble("01234e56") the characters "e56" are trailing
396         //          junk, too.
397         //  - ALLOW_TRAILING_JUNK: ignore trailing characters that are not part of
398         //      a double literal.
399         //  - ALLOW_LEADING_SPACES: skip over leading spaces.
400         //  - ALLOW_TRAILING_SPACES: ignore trailing spaces.
401         //  - ALLOW_SPACES_AFTER_SIGN: ignore spaces after the sign.
402         //       Ex: StringToDouble("-   123.2") -> -123.2.
403         //           StringToDouble("+   123.2") -> 123.2
404         //
405         // empty_string_value is returned when an empty string is given as input.
406         // If ALLOW_LEADING_SPACES or ALLOW_TRAILING_SPACES are set, then a string
407         // containing only spaces is converted to the 'empty_string_value', too.
408         //
409         // junk_string_value is returned when
410         //  a) ALLOW_TRAILING_JUNK is not set, and a junk character (a character not
411         //     part of a double-literal) is found.
412         //  b) ALLOW_TRAILING_JUNK is set, but the string does not start with a
413         //     double literal.
414         //
415         // infinity_symbol and nan_symbol are strings that are used to detect
416         // inputs that represent infinity and NaN. They can be null, in which case
417         // they are ignored.
418         // The conversion routine first reads any possible signs. Then it compares the
419         // following character of the input-string with the first character of
420         // the infinity, and nan-symbol. If either matches, the function assumes, that
421         // a match has been found, and expects the following input characters to match
422         // the remaining characters of the special-value symbol.
423         // This means that the following restrictions apply to special-value symbols:
424         //  - they must not start with signs ('+', or '-'),
425         //  - they must not have the same first character.
426         //  - they must not start with digits.
427         //
428         // Examples:
429         //  flags = ALLOW_HEX | ALLOW_TRAILING_JUNK,
430         //  empty_string_value = 0.0,
431         //  junk_string_value = NaN,
432         //  infinity_symbol = "infinity",
433         //  nan_symbol = "nan":
434         //    StringToDouble("0x1234") -> 4660.0.
435         //    StringToDouble("0x1234K") -> 4660.0.
436         //    StringToDouble("") -> 0.0  // empty_string_value.
437         //    StringToDouble(" ") -> NaN  // junk_string_value.
438         //    StringToDouble(" 1") -> NaN  // junk_string_value.
439         //    StringToDouble("0x") -> NaN  // junk_string_value.
440         //    StringToDouble("-123.45") -> -123.45.
441         //    StringToDouble("--123.45") -> NaN  // junk_string_value.
442         //    StringToDouble("123e45") -> 123e45.
443         //    StringToDouble("123E45") -> 123e45.
444         //    StringToDouble("123e+45") -> 123e45.
445         //    StringToDouble("123E-45") -> 123e-45.
446         //    StringToDouble("123e") -> 123.0  // trailing junk ignored.
447         //    StringToDouble("123e-") -> 123.0  // trailing junk ignored.
448         //    StringToDouble("+NaN") -> NaN  // NaN string literal.
449         //    StringToDouble("-infinity") -> -inf.  // infinity literal.
450         //    StringToDouble("Infinity") -> NaN  // junk_string_value.
451         //
452         //  flags = ALLOW_OCTAL | ALLOW_LEADING_SPACES,
453         //  empty_string_value = 0.0,
454         //  junk_string_value = NaN,
455         //  infinity_symbol = NULL,
456         //  nan_symbol = NULL:
457         //    StringToDouble("0x1234") -> NaN  // junk_string_value.
458         //    StringToDouble("01234") -> 668.0.
459         //    StringToDouble("") -> 0.0  // empty_string_value.
460         //    StringToDouble(" ") -> 0.0  // empty_string_value.
461         //    StringToDouble(" 1") -> 1.0
462         //    StringToDouble("0x") -> NaN  // junk_string_value.
463         //    StringToDouble("0123e45") -> NaN  // junk_string_value.
464         //    StringToDouble("01239E45") -> 1239e45.
465         //    StringToDouble("-infinity") -> NaN  // junk_string_value.
466         //    StringToDouble("NaN") -> NaN  // junk_string_value.
467         StringToDoubleConverter(int flags,
468                                 double empty_string_value,
469                                 double junk_string_value,
470                                 const char* infinity_symbol,
471                                 const char* nan_symbol)
472         : flags_(flags),
473         empty_string_value_(empty_string_value),
474         junk_string_value_(junk_string_value),
475         infinity_symbol_(infinity_symbol),
476         nan_symbol_(nan_symbol) {
477         }
478         
479         // Performs the conversion.
480         // The output parameter 'processed_characters_count' is set to the number
481         // of characters that have been processed to read the number.
482         // Spaces than are processed with ALLOW_{LEADING|TRAILING}_SPACES are included
483         // in the 'processed_characters_count'. Trailing junk is never included.
484         double StringToDouble(const char* buffer,
485                               int length,
486                               int* processed_characters_count);
487         
488     private:
489         const int flags_;
490         const double empty_string_value_;
491         const double junk_string_value_;
492         const char* const infinity_symbol_;
493         const char* const nan_symbol_;
494         
495         DISALLOW_IMPLICIT_CONSTRUCTORS(StringToDoubleConverter);
496     };
497     
498 }  // namespace double_conversion
499
500 } // namespace WTF
501
502 #endif  // DOUBLE_CONVERSION_DOUBLE_CONVERSION_H_