from bisect import insort from time import strftime, time, localtime, mktime from enigma import eTimer import datetime import NavigationInstance class TimerEntry: StateWaiting = 0 StatePrepared = 1 StateRunning = 2 StateEnded = 3 def __init__(self, begin, end): self.begin = begin self.prepare_time = 20 self.end = end self.state = 0 self.resetRepeated() #begindate = localtime(self.begin) #newdate = datetime.datetime(begindate.tm_year, begindate.tm_mon, begindate.tm_mday 0, 0, 0); self.repeatedbegindate = begin self.backoff = 0 self.disabled = False def resetState(self): self.state = self.StateWaiting self.cancelled = False self.first_try_prepare = True self.timeChanged() def resetRepeated(self): self.repeated = int(0) def setRepeated(self, day): self.repeated |= (2 ** day) print "Repeated: " + str(self.repeated) def isRunning(self): return self.state == self.StateRunning def addOneDay(self, timedatestruct): oldHour = timedatestruct.tm_hour newdate = (datetime.datetime(timedatestruct.tm_year, timedatestruct.tm_mon, timedatestruct.tm_mday, timedatestruct.tm_hour, timedatestruct.tm_min, timedatestruct.tm_sec) + datetime.timedelta(days=1)).timetuple() if localtime(mktime(newdate)).tm_hour != oldHour: return (datetime.datetime(timedatestruct.tm_year, timedatestruct.tm_mon, timedatestruct.tm_mday, timedatestruct.tm_hour, timedatestruct.tm_min, timedatestruct.tm_sec) + datetime.timedelta(days=2)).timetuple() return newdate # update self.begin and self.end according to the self.repeated-flags def processRepeated(self, findRunningEvent = True): print "ProcessRepeated" if (self.repeated != 0): now = int(time()) + 1 #to avoid problems with daylight saving, we need to calculate with localtime, in struct_time representation localrepeatedbegindate = localtime(self.repeatedbegindate) localbegin = localtime(self.begin) localend = localtime(self.end) localnow = localtime(now) print "localrepeatedbegindate:", strftime("%c", localrepeatedbegindate) print "localbegin:", strftime("%c", localbegin) print "localend:", strftime("%c", localend) print "localnow:", strftime("%c", localnow) day = [] flags = self.repeated for x in (0, 1, 2, 3, 4, 5, 6): if (flags & 1 == 1): day.append(0) print "Day: " + str(x) else: day.append(1) flags = flags >> 1 # if day is NOT in the list of repeated days # OR if the day IS in the list of the repeated days, check, if event is currently running... then if findRunningEvent is false, go to the next event while ((day[localbegin.tm_wday] != 0) or (mktime(localrepeatedbegindate) > mktime(localbegin)) or ((day[localbegin.tm_wday] == 0) and ((findRunningEvent and localend < localnow) or ((not findRunningEvent) and localbegin < localnow)))): localbegin = self.addOneDay(localbegin) localend = self.addOneDay(localend) print "localbegin after addOneDay:", strftime("%c", localbegin) print "localend after addOneDay:", strftime("%c", localend) #we now have a struct_time representation of begin and end in localtime, but we have to calculate back to (gmt) seconds since epoch self.begin = int(mktime(localbegin)) self.end = int(mktime(localend)) if self.begin == self.end: self.end += 1 print "ProcessRepeated result" print strftime("%c", localtime(self.begin)) print strftime("%c", localtime(self.end)) self.timeChanged() def __lt__(self, o): return self.getNextActivation() < o.getNextActivation() # must be overridden def activate(self): pass # can be overridden def timeChanged(self): pass # check if a timer entry must be skipped def shouldSkip(self): return self.end <= time() and self.state == TimerEntry.StateWaiting def abort(self): self.end = time() # in case timer has not yet started, but gets aborted (so it's preparing), # set begin to now. if self.begin > self.end: self.begin = self.end self.cancelled = True # must be overridden! def getNextActivation(): pass def disable(self): self.disabled = True def enable(self): self.disabled = False class Timer: # the time between "polls". We do this because # we want to account for time jumps etc. # of course if they occur <100s before starting, # it's not good. thus, you have to repoll when # you change the time. # # this is just in case. We don't want the timer # hanging. we use this "edge-triggered-polling-scheme" # anyway, so why don't make it a bit more fool-proof? MaxWaitTime = 100 def __init__(self): self.timer_list = [ ] self.processed_timers = [ ] self.timer = eTimer() self.timer.callback.append(self.calcNextActivation) self.lastActivation = time() self.calcNextActivation() self.on_state_change = [ ] def stateChanged(self, entry): for f in self.on_state_change: f(entry) def cleanup(self): self.processed_timers = [entry for entry in self.processed_timers if entry.disabled] def addTimerEntry(self, entry, noRecalc=0): entry.processRepeated() # when the timer has not yet started, and is already passed, # don't go trough waiting/running/end-states, but sort it # right into the processedTimers. if entry.shouldSkip() or entry.state == TimerEntry.StateEnded or (entry.state == TimerEntry.StateWaiting and entry.disabled): print "already passed, skipping" print "shouldSkip:", entry.shouldSkip() print "state == ended", entry.state == TimerEntry.StateEnded print "waiting && disabled:", (entry.state == TimerEntry.StateWaiting and entry.disabled) insort(self.processed_timers, entry) entry.state = TimerEntry.StateEnded else: insort(self.timer_list, entry) if not noRecalc: self.calcNextActivation() # small piece of example code to understand how to use record simulation # if NavigationInstance.instance: # lst = [ ] # cnt = 0 # for timer in self.timer_list: # print "timer", cnt # cnt += 1 # if timer.state == 0: #waiting # lst.append(NavigationInstance.instance.recordService(timer.service_ref)) # else: # print "STATE: ", timer.state # # for rec in lst: # if rec.start(True): #simulate # print "FAILED!!!!!!!!!!!!" # else: # print "OK!!!!!!!!!!!!!!" # NavigationInstance.instance.stopRecordService(rec) # else: # print "no NAV" def setNextActivation(self, when): delay = int((when - time()) * 1000) print "[timer.py] next activation: %d (in %d ms)" % (when, delay) self.timer.start(delay, 1) self.next = when def calcNextActivation(self): if self.lastActivation > time(): print "[timer.py] timewarp - re-evaluating all processed timers." tl = self.processed_timers self.processed_timers = [ ] for x in tl: # simulate a "waiting" state to give them a chance to re-occure x.resetState() self.addTimerEntry(x, noRecalc=1) self.processActivation() self.lastActivation = time() min = int(time()) + self.MaxWaitTime # calculate next activation point if self.timer_list: w = self.timer_list[0].getNextActivation() if w < min: min = w else: print "next real activation is", strftime("%c", localtime(w)) self.setNextActivation(min) def timeChanged(self, timer): if timer not in (self.processed_timers + self.timer_list): print "timer not found" return print "time changed" timer.timeChanged() if timer.state == TimerEntry.StateEnded: self.processed_timers.remove(timer) else: self.timer_list.remove(timer) # give the timer a chance to re-enqueue if timer.state == TimerEntry.StateEnded: timer.state = TimerEntry.StateWaiting self.addTimerEntry(timer) def doActivate(self, w): self.timer_list.remove(w) # when activating a timer which has already passed, # simply abort the timer. don't run trough all the stages. if w.shouldSkip(): w.state = TimerEntry.StateEnded else: # when active returns true, this means "accepted". # otherwise, the current state is kept. # the timer entry itself will fix up the delay then. if w.activate(): w.state += 1 # did this timer reached the last state? if w.state < TimerEntry.StateEnded: # no, sort it into active list insort(self.timer_list, w) else: # yes. Process repeated, and re-add. if w.repeated: w.processRepeated() w.state = TimerEntry.StateWaiting self.addTimerEntry(w) else: insort(self.processed_timers, w) self.stateChanged(w) def processActivation(self): print "It's now ", strftime("%c", localtime(time())) t = int(time()) + 1 # we keep on processing the first entry until it goes into the future. while self.timer_list and self.timer_list[0].getNextActivation() < t: self.doActivate(self.timer_list[0])