initial import
[vuplus_webkit] / Source / JavaScriptCore / tests / mozilla / ecma / Expressions / 11.5.3.js
1 /* The contents of this file are subject to the Netscape Public
2  * License Version 1.1 (the "License"); you may not use this file
3  * except in compliance with the License. You may obtain a copy of
4  * the License at http://www.mozilla.org/NPL/
5  *
6  * Software distributed under the License is distributed on an "AS
7  * IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or
8  * implied. See the License for the specific language governing
9  * rights and limitations under the License.
10  *
11  * The Original Code is Mozilla Communicator client code, released March
12  * 31, 1998.
13  *
14  * The Initial Developer of the Original Code is Netscape Communications
15  * Corporation. Portions created by Netscape are
16  * Copyright (C) 1998 Netscape Communications Corporation. All
17  * Rights Reserved.
18  *
19  * Contributor(s): 
20  * 
21  */
22 /**
23     File Name:          11.5.3.js
24     ECMA Section:       11.5.3 Applying the % operator
25     Description:
26
27     The binary % operator is said to yield the remainder of its operands from
28     an implied division; the left operand is the dividend and the right operand
29     is the divisor. In C and C++, the remainder operator accepts only integral
30     operands, but in ECMAScript, it also accepts floating-point operands.
31
32     The result of a floating-point remainder operation as computed by the %
33     operator is not the same as the "remainder" operation defined by IEEE 754.
34     The IEEE 754 "remainder" operation computes the remainder from a rounding
35     division, not a truncating division, and so its behavior is not analogous
36     to that of the usual integer remainder operator. Instead the ECMAScript
37     language defines % on floating-point operations to behave in a manner
38     analogous to that of the Java integer remainder operator; this may be
39     compared with the C library function fmod.
40
41     The result of a ECMAScript floating-point remainder operation is determined by the rules of IEEE arithmetic:
42
43       If either operand is NaN, the result is NaN.
44       The sign of the result equals the sign of the dividend.
45       If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
46       If the dividend is finite and the divisor is an infinity, the result equals the dividend.
47       If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
48       In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
49       from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
50       is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
51       possible without exceeding the magnitude of the true mathematical quotient of n and d.
52
53     Author:             christine@netscape.com
54     Date:               12 november 1997
55 */
56     var SECTION = "11.5.3";
57     var VERSION = "ECMA_1";
58     startTest();
59     var testcases = getTestCases();
60     var BUGNUMBER="111202";
61
62     writeHeaderToLog( SECTION + " Applying the % operator");
63     test();
64
65 function test() {
66     for ( tc=0; tc < testcases.length; tc++ ) {
67         testcases[tc].passed = writeTestCaseResult(
68                             testcases[tc].expect,
69                             testcases[tc].actual,
70                             testcases[tc].description +" = "+
71                             testcases[tc].actual );
72
73         testcases[tc].reason += ( testcases[tc].passed ) ? "" : "wrong value ";
74     }
75     stopTest();
76     return ( testcases );
77 }
78 function getTestCases() {
79     var array = new Array();
80     var item = 0;
81
82    // if either operand is NaN, the result is NaN.
83
84     array[item++] = new TestCase( SECTION,    "Number.NaN % Number.NaN",    Number.NaN,     Number.NaN % Number.NaN );
85     array[item++] = new TestCase( SECTION,    "Number.NaN % 1",             Number.NaN,     Number.NaN % 1 );
86     array[item++] = new TestCase( SECTION,    "1 % Number.NaN",             Number.NaN,     1 % Number.NaN );
87
88     array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % Number.NaN",    Number.NaN,     Number.POSITIVE_INFINITY % Number.NaN );
89     array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % Number.NaN",    Number.NaN,     Number.NEGATIVE_INFINITY % Number.NaN );
90
91     //  If the dividend is an infinity, or the divisor is a zero, or both, the result is NaN.
92     //  dividend is an infinity
93
94     array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY",    Number.NaN,   Number.NEGATIVE_INFINITY % Number.NEGATIVE_INFINITY );
95     array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY",    Number.NaN,   Number.POSITIVE_INFINITY % Number.NEGATIVE_INFINITY );
96     array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY",    Number.NaN,   Number.NEGATIVE_INFINITY % Number.POSITIVE_INFINITY );
97     array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY",    Number.NaN,   Number.POSITIVE_INFINITY % Number.POSITIVE_INFINITY );
98
99     array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % 0",   Number.NaN,     Number.POSITIVE_INFINITY % 0 );
100     array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % 0",   Number.NaN,     Number.NEGATIVE_INFINITY % 0 );
101     array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % -0",  Number.NaN,     Number.POSITIVE_INFINITY % -0 );
102     array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % -0",  Number.NaN,     Number.NEGATIVE_INFINITY % -0 );
103
104     array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % 1 ",  Number.NaN,     Number.NEGATIVE_INFINITY % 1 );
105     array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % -1 ", Number.NaN,     Number.NEGATIVE_INFINITY % -1 );
106     array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % 1 ",  Number.NaN,     Number.POSITIVE_INFINITY % 1 );
107     array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % -1 ", Number.NaN,     Number.POSITIVE_INFINITY % -1 );
108
109     array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % Number.MAX_VALUE ",   Number.NaN,   Number.NEGATIVE_INFINITY % Number.MAX_VALUE );
110     array[item++] = new TestCase( SECTION,    "Number.NEGATIVE_INFINITY % -Number.MAX_VALUE ",  Number.NaN,   Number.NEGATIVE_INFINITY % -Number.MAX_VALUE );
111     array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % Number.MAX_VALUE ",   Number.NaN,   Number.POSITIVE_INFINITY % Number.MAX_VALUE );
112     array[item++] = new TestCase( SECTION,    "Number.POSITIVE_INFINITY % -Number.MAX_VALUE ",  Number.NaN,   Number.POSITIVE_INFINITY % -Number.MAX_VALUE );
113
114     // divisor is 0
115     array[item++] = new TestCase( SECTION,    "0 % -0",                         Number.NaN,     0 % -0 );
116     array[item++] = new TestCase( SECTION,    "-0 % 0",                         Number.NaN,     -0 % 0 );
117     array[item++] = new TestCase( SECTION,    "-0 % -0",                        Number.NaN,     -0 % -0 );
118     array[item++] = new TestCase( SECTION,    "0 % 0",                          Number.NaN,     0 % 0 );
119
120     array[item++] = new TestCase( SECTION,    "1 % 0",                          Number.NaN,   1%0 );
121     array[item++] = new TestCase( SECTION,    "1 % -0",                         Number.NaN,   1%-0 );
122     array[item++] = new TestCase( SECTION,    "-1 % 0",                         Number.NaN,   -1%0 );
123     array[item++] = new TestCase( SECTION,    "-1 % -0",                        Number.NaN,   -1%-0 );
124
125     array[item++] = new TestCase( SECTION,    "Number.MAX_VALUE % 0",           Number.NaN,   Number.MAX_VALUE%0 );
126     array[item++] = new TestCase( SECTION,    "Number.MAX_VALUE % -0",          Number.NaN,   Number.MAX_VALUE%-0 );
127     array[item++] = new TestCase( SECTION,    "-Number.MAX_VALUE % 0",          Number.NaN,   -Number.MAX_VALUE%0 );
128     array[item++] = new TestCase( SECTION,    "-Number.MAX_VALUE % -0",         Number.NaN,   -Number.MAX_VALUE%-0 );
129
130     // If the dividend is finite and the divisor is an infinity, the result equals the dividend.
131
132     array[item++] = new TestCase( SECTION,    "1 % Number.NEGATIVE_INFINITY",   1,              1 % Number.NEGATIVE_INFINITY );
133     array[item++] = new TestCase( SECTION,    "1 % Number.POSITIVE_INFINITY",   1,              1 % Number.POSITIVE_INFINITY );
134     array[item++] = new TestCase( SECTION,    "-1 % Number.POSITIVE_INFINITY",  -1,             -1 % Number.POSITIVE_INFINITY );
135     array[item++] = new TestCase( SECTION,    "-1 % Number.NEGATIVE_INFINITY",  -1,             -1 % Number.NEGATIVE_INFINITY );
136
137     array[item++] = new TestCase( SECTION,    "Number.MAX_VALUE % Number.NEGATIVE_INFINITY",   Number.MAX_VALUE,    Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
138     array[item++] = new TestCase( SECTION,    "Number.MAX_VALUE % Number.POSITIVE_INFINITY",   Number.MAX_VALUE,    Number.MAX_VALUE % Number.POSITIVE_INFINITY );
139     array[item++] = new TestCase( SECTION,    "-Number.MAX_VALUE % Number.POSITIVE_INFINITY",  -Number.MAX_VALUE,   -Number.MAX_VALUE % Number.POSITIVE_INFINITY );
140     array[item++] = new TestCase( SECTION,    "-Number.MAX_VALUE % Number.NEGATIVE_INFINITY",  -Number.MAX_VALUE,   -Number.MAX_VALUE % Number.NEGATIVE_INFINITY );
141
142     array[item++] = new TestCase( SECTION,    "0 % Number.POSITIVE_INFINITY",   0, 0 % Number.POSITIVE_INFINITY );
143     array[item++] = new TestCase( SECTION,    "0 % Number.NEGATIVE_INFINITY",   0, 0 % Number.NEGATIVE_INFINITY );
144     array[item++] = new TestCase( SECTION,    "-0 % Number.POSITIVE_INFINITY",  -0,   -0 % Number.POSITIVE_INFINITY );
145     array[item++] = new TestCase( SECTION,    "-0 % Number.NEGATIVE_INFINITY",  -0,   -0 % Number.NEGATIVE_INFINITY );
146
147     // If the dividend is a zero and the divisor is finite, the result is the same as the dividend.
148
149     array[item++] = new TestCase( SECTION,    "0 % 1",                          0,              0 % 1 );
150     array[item++] = new TestCase( SECTION,    "0 % -1",                        -0,              0 % -1 );
151     array[item++] = new TestCase( SECTION,    "-0 % 1",                        -0,              -0 % 1 );
152     array[item++] = new TestCase( SECTION,    "-0 % -1",                       0,               -0 % -1 );
153
154 //        In the remaining cases, where neither an infinity, nor a zero, nor NaN is involved, the floating-point remainder r
155 //      from a dividend n and a divisor d is defined by the mathematical relation r = n (d * q) where q is an integer that
156 //      is negative only if n/d is negative and positive only if n/d is positive, and whose magnitude is as large as
157 //      possible without exceeding the magnitude of the true mathematical quotient of n and d.
158
159     return ( array );
160 }